1. Stable transformants of Japanese cedar (Sugi)
Japanese cedar (Sugi, Cryptomeria japonica D Don.) is the most important afforestation coniferous tree in Japan. Since coniferous trees normally have a long juvenile period, the improvement of Sugi by a transgenic approach is effective in terms of shortening the breeding period. We describe a protocol for Agrobacterium-mediated transformation of Sugi using embryogenic tissues as explants isolated from immature seeds (pp. 147-156). The upper image shows fluorescent image of somatic embryos regenerated from the embryogenic tissue introduced with green fluorescent protein gene. The lower image shows transgenic Sugi plants grown in a semi-closed greenhouse. This picture is taken by Ken-ichi Konagaya using MZ FLIII stereo fluorescence microscope (Leica Microsystems) and D60 digital camera (Nikon) at Forestry and Forest Products Research Institute (Ibaraki, Japan).
2. Regeneration of tobacco plastid transformants
This picture shows regeneration shoots of tobacco under spectinomycin selection after bombardment of the plastid transformation vector including the GFP expression cassette. Regenerated shoots with green fluorescence contain transformed plastids, and with red fluorescence still contain wild type plastids. In shoots obtained on first round selection, several mixture patterns of wild type and transformed cells are seen (pp. 223-232). This picture was taken used a fluorescence microscope (Leica MZ 16FA, Leica Microsystems, Germany) with a GFP2 filter (480-nm excitation filter/510-nm barrier filter) at NIAS, Ibaraki, Japan.
3. The culture room used for the production of microtubers
Potato (Solanum tuberosum L.) crops are vegetatively propagated using tubers and facing many risks caused by pathogens. The production of microtubers under sterile conditions is a good way to produce disease-free materials for crop production. Bioreactors have been used for this purpose, but bioreactors are expensive and difficult to handle. We have developed a system using plastic culture bags with forced aeration system for both liquid medium and gaseous phase to produce microtubers of potato. Each bag was 300 mm X 490 mm (total volume 8 l). We were able to place 12 culture bags in each shelf space with dimensions of 120 cm width, 60 cm depth, and 65 cm height, and produced about 250,000 microtubers per year in a 66 m2 tissue culture room using the culture bag system (pp. 233-238). Photographed by Noboru Ohnishi and Kanji Mamiya. This picture was taken using a digital camera (RICOH Caplio R7) at Tochigi, Japan.
4. Genome editing in wheat
Due to the complex allohexaploid genome nature, genome editing is a promising approach in wheat, where developing a mutant is more challenging compared with diploid crops, especially for genetically recessive traits. Using Agrobacterium-delivered CRISPR/Cas9 system, wheat lines with loss-of-function of Qsd1, which controls seed dormancy in barley, was efficiently developed. The edited triple-recessive mutant of TaQsd1 showed longer seed dormancy and is expected to contribute to reducing pre-harvest sprouting of wheat in rain-prone areas. This result was achieved based on the improvement of wheat tissue culture (pp. 177-184) and the development of a method for detection of mutation (pp. 247-251). Photographed by Fumitaka Abe, This picture was taken using a digital camera (Pentax K-7) at Institute of Crop Science, NARO (Ibaraki Japan).
5. Plant regeneration and rooting in transgenic maize
Maize (Zea mays L.) is one of the three most important crops, and a tremendous effort for production of transformed maize has been made since the 1990s. We reviewed progress in maize tissue culture technology, which is a core component of gene transfer and editing processes, and presented typical protocols for creation of transgenic plants for both particle bombardment and Agrobacterium-mediated methods (pp. 121-128). Pictures are of regenerated plants of maize inbred A188, which is a model variety for experiments of tissue culture and transformation. Immature embryos of A188 were inoculated by Agrobacterium tumefaciens that had a bar gene and a GUS gene in its T-DNA. Transgenic cells grown from the immature embryos were selected and plants were regenerated on the media that contained phosphinothricin. Photographed by Yuji Ishida. Both pictures were taken using a digital camera (Nikon Coolpix P310) at JT Plant Innovation Center (Shizuoka, Japan).
6. Genome edited potatoes showing SGA-reduced phenotype.
Potato is one of the most important crops in the world. Steroidal glycoalkaloids (SGAs) are toxic specialized metabolites found in potato that cause food poisoning issues. Using Agrobacterium-mediated transformation, transgenic potato harboring the TALEN expression vector targeting SSR2 gene, which is encoding a key enzyme for SGA biosynthesis with reduced SGA levels have been generated in previous research (Sawai et al., Plant Cell, 2014). In this issue, we report the transgene-free genome editing in potato through transient TALEN expression by Agrobacterium infection (pp. 205-211). Photographed by Shuhei Yasumoto and Jekson Robertlee (Osaka University) in Osaka, Japan (Nikon D90).
7. Regenerated plants of Tricyrtis ‘Shinonome’ at the flowering stage
The family Liliaceae (Cronquist system) contains various important ornamental plants such as Agapanthus, Hemerocallis, Hosta, Lilium, Muscari, Tricyrtis and Tulipa species. We have been examining the establishment of plant regeneration and genetic transformation systems in liliaceous ornamental plants for their biotechnological breeding and elucidation of the molecular mechanisms determining ornamental traits. Among liliaceous ornamental plants used, Tricyrtis spp. has several advantages for regeneration and transformation studies: efficient regeneration from embryogenic calli, higher transformation efficiency by an Agrobacterium-mediated method, relatively small plant size, ease of cultivation, and taking only 1 year from in vitro regeneration to flowering. We are now investigating the molecular mechanisms for determining plant form, flower color and flower form by using Tricyrtis spp. as liliaceous model plants (pp. 129-140). Photographed by Masaru Nakano, Experimental greenhouse at Faculty of Horticulture, Niigata University (Niigata, Japan). Fujifilm FinePix S9000
8. The concept of in planta particle bombardment (iPB)
The L2 layer cells within the SAM potentially develop into pollen and embryo sac. If genome editing occurs in these cells, the mutation can be inherited to the next generation. Gold particles can accommodate not only DNA but also RNA and protein including Cas9 and TALENs (pp. 171-176).
9. A GFP-expressing transgenic fruit of C. moschata
Cucumber (Cucumis sativus L.) and Cucurbita species (squashes, pumpkins, and gourds), belonging to the Cucurbitaceae family, are among the major vegetable crops in the world. These pictures show GFP-positive fruits of C. moschata appears green under blue light owing to GFP fluorescence (Nanasato and Tabei, pp. 141-146). Photographed by Yoshihiko Nanasato using a digital camera (Sony DSC-HX5V) and an epifluorescence stereomicroscope (Leica MZ16FA) at NIAS (Ibaraki, Japan).
10. Somatic embryogenesis of tea plant (Camellia sinensis) for transformation.
Various kinds of tea beverage are produced from leaves of tea plant (Camellia sinensis). SHIZUOKA prefecture is as famous as a major tea plantation in Japan. Green tea is traditionally the most popular in Japan and it is a part of traditional culture and cuisine. Somatic embryos of tea plant are induced from cotyledons of immature seeds, and secondary embryogenesis occurs by transferring the medium containing auxin to hormone-free medium. Somatic embryos can develop to plantlets in vitro (pp. 195-203). Photographed by Kazumi Furukawa using a digital camera (Olympus tough TG-5). Tea plantation area is at Fuji, Shizuoka, Japan. Somatic embryos and plantlets are cultured at KOSEN (Shizuoka, Japan)
11. Precocious flowering of transgenic apple (JM2)
Apple MdTFL1 (an orthologue of TERMINAL FLOWER 1 from Arabidopsis) is essential to reproductive/vegetative growth and flower initiation in apple. The suppression of MdTFL1 expression caused strong induction to reproductive growth and set flowers on their shoot apexes. The picture represents flowers of MdTFL1 silencing transgenic JM2 of five years old, which bloomed at 12 month after transformation with Agrobacterium method (pp. 163-170). Photographed by Masato Wada using a digital camera (Olympus SP-350) in NIFTS, NARO, Iwate, Japan.
12. Agrobacterium-mediated genetic transformation of ‘Shine Muscat’ grape
The cultivation area and consumption of grape cultivar ‘Shine Muscat’ (Vitis labruscana), which was released by NARO, have rapidly increased. Based on our efficient method for embryogenic callus induction, we established Agrobacterium-mediated genetic transformation of ‘Shine Muscat’ (pp. 185-194). The picture shows the regenerated grape plants in vitro. Photographed by Ikuko Nakajima (Institute of Fruit Tree and Tea Science, NARO) in Tsukuba, Ibaraki, Japan, and (SONY Cyber-shot).